Uncovering predisposition to COPD with predicted gene expression (eQTL)

Angeline Yasodhara¹, M. Aziz Mezlini^{1,2}, Michael H. Cho³, Craig P. Hersh³, Anna Goldenberg^{1,2} SickKids¹ University of Toronto; ²Genetics & Genome Biology, SickKids Research Institute; ³Brigham and Women's Hospital, Harvard Medical School, Boston

Introduction

Facts & Figures:

- 1. Chronic Obstructive Pulmonary Disease (COPD): lung conditions with increased breathlessness, e.g. emphysema, chronic bronchitis, refractory (non-reversible) asthma, and some bronchiectasis.
- 2. In 2015, ~**3 million deaths** accounted by COPD (~ 5% of all deaths in that year)¹
- 3. Causes of COPD:
 - environmental factors (smoking, exposure to chemical pollutants) $(37.7\% \text{ rate of heritability}^2)$ - genetic factors

- 4. What we know so far: 532 genes (868 loci; GWAS/meta-analysis)^{3,4}
- 5. What we don't know: the mechanisms through which these genes affect the condition

To give us more insight, we can analyze transcriptome data. The challenges:

Gene Expression Decomposition⁶

Small number of individuals in the observed transcriptome compared to genotype.

b. Transcriptome level is affected by multiple factors.

Study Aim

To identify COPD-associated genes by evaluating proportion of gene expression explained by eQTL (displayed with the colour orange in the graph above). This value can be computed using $fQTL^5$ and PrediXcan⁶.

Data

Methods

- 1. Predict gene expression with fQTL and PrediXcan to for each individual in different tissues. 2. Find association using 2 hypothesis:
- Hypothesis 1: Genes have different proportions of genetically regulated component in their expression.
- a. Find associated genes on observed transcriptome b. Find associated genes on predicted expression of top 500 highly-associated genes from above

Statistical tests used:

- T-test

- Logistic regression on case/control status
- Logistic regression on case/control status and smoking duration
- A new statistical method developed by Mezlini, M. A.

Mezlini developed a statistical test to analyze if two populations are different by looking for enrichment close to the ends of the distribution as depicted above.

Multiple testing correction: p-value adjustment with false discovery rate (FDR) method with threshold 0.05.

1. Chronic obstructive pulmonary disease (COPD). (2017). World Health Organization. Retrieved 14 August 2017, from http://www.who.int/mediacentre/factsheets/fs315/en/ 2. Zhou, J., Cho, M., Castaldi, P., Hersh, C., Silverman, E., & Laird, N. (2013). Heritability of Chronic Obstructive Pulmonary Disease and Related Phenotypes in Smokers. doi: 10.1164/rccm.201302-0263oc 3. Probert, K., Miller, S., Kheirallah, A. K., & Hall, I. P. (2015). Developmental genetics of the COPD lung. doi: 10.1186/s40749-015-0014-x 4. Burdett, T., Hall, P. N., Hastings, E., Hindorff L. A., Junkins, H. A., Klemm A. K., ... Welter, D. (2017). The NHGRI-EBI Catalog of published genome-wide association studies. Retrieved 14 August 2017, from www.ebi.ac.uk/gwas 5. Park, Y., Sarkar, A., Bhutani, K., & Kellis, M. (2017). Multi-tissue polygenic models for transcriptome-wide association studies. doi: 10.1101/107623 6. Gamazon, E., Wheeler, H., Shah, K., Mozaffari, S., Aquino-Michaels, K., Carroll, R. J., ... Kyung Im, H. (2015). A gene-based association method for mapping traits using reference transcriptome data. doi: 10.1038/ng.3367

Hypothesis 2: Genes with higher genetic regulation plays a larger role in heritability. a. Compute correlation of predicted value to observed transcriptome.

b. Find associated genes on predicted expression of genes with correlation > = 0.2.

Results

Figure 2. Discovered COPD associated genes. B) Network interaction between discovered genes and a few genes previously published³. C) Locations of discovered genes and published $SNPs^{3,4}$.

A) Gene	Function	Ethnic
LYPLA2	membrane enzyme	NHW
CRY1	circadian regulation	NHW
MLXIPL	triglyceride synthesis	Combir
NR1H3	lipid homeostasis	Combi
RCN1	Ca ⁺² binding, ER	AA
PSMA4	proteasome	NHW
SULT1A1	sulfate conjugation	NHW
MYO15A	actin organization	NHW
GINM1	glycoprotein	NHW
ADCK3	electron transfer	NHW
MCM6	DNA replication	NHW
HIGD2A	mitochondrial respiration	NHW
SGF29	transcriptional regulation	NHW
BTN3A2	immune response	NHW

Figure 3. Manhattan plot of the discovery of genes associated with COPD using predicted gene expression with different models and statistical tests. FDR-corrected p-values for A-C) top 500 highly-associated genes observed in transcriptome; D,E) genes with expression correlation ≥ 0.2 Note: only associations with p-value less than 0.75 is plotted.

A) COPD Associations in African-Americans (Hypothesis 1) B) COPD Associations in Non-Hispanic Whites (Hypothesis 1) D) COPD Associations in African-Americans (Hypothesis 2) E) COPD Associations in Non-Hispanic Whites (Hypothesis 1) D) COPD Associations in African-Americans (Hypothesis 2) E) COPD Associations in Non-Hispanic Whites (Hypothesis 1) D) COPD Associations in African-Americans (Hypothesis 2) E) COPD Associations in Non-Hispanic Whites (Hypothesis 1) D) COPD Associations in African-Americans (Hypothesis 2) E) COPD Associations in Non-Hispanic Whites (Hypothesis 1) D) COPD Associations in African-Americans (Hypothesis 2) E) COPD Associations in African-Americans (Hypothesis 2) E) COPD Associations in Non-Hispanic Whites (Hypothesis 2) E) COPD Associations in African-Americans (Hypothesis 2) E) COPD Associations in Non-Hispanic Whites (Hypothesis 2) E) COPD Associations in African-Americans (Hypothesis 2) E) COPD Associations in African-Americans (Hypothesis 2) E) COPD Associations in Non-Hispanic Whites (Hypothesis 2) E) COPD Associations in African-Americans (Hypothesis 2) E) COPD Associations in Non-Hispanic Whites (Hypothesis 2) E) COPD Associations in African-Americans (Hypothesis 2) E) COPD Associations (Hypothesis 2) E) COPD Associa

- Predisposition to COPD in different ethnicities vary

nd	Legend:
	Models used to predict expression:
	Lung fQTL
	Lung PrediXcan 1000Genome
	Lung PrediXcan HapMap
	Whole Blood fQTL
	Whole Blood PrediXcan 1000Genome
	Whole Blood PrediXcan HapMap
enes	 Statistical tests used for association: A new statistical method developed by Mezlini, M. A. △ Logistic regression on case/control status + Logistic regression on case/control + smoking duration X T-test
ion ion	For Figure 2 : Genes discovered by previous GWAS